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Problem Statement
 

• Solar integration studies will require credible PV 
and CSP power output estimates for systems that 
are: 
– diversely sized (kWs to MWs) 
– time-synchronous 
– sub-hourly (1-min?) 
– distributed unevenly across a region 

• Developing a valid model of short-term, dynamic 
solar resource over a large area is the main 
challenge. 
– PV output is proportional to spatially averaged 


irradiance over the plant.
 



Validation Criteria
 

• How to judge irradiance/power model validity? 
– Comparison of historical measured irradiance and 

power to predicted values for same time periods 
• Clearness index distribution 
• Ramp rate distributions 
• Duration and magnitude of changes 
• Autocorrelation features 
• Spatial correlation features 
• More? 

• How much accuracy is necessary? 
– Depends on intended application 

• Predicting vs. Forecasting 



Prediction vs. Forecasting
 

• Prediction 
– Given low resolution, historical solar estimates 

(e.g., satellite data), predict 1-min PV plant 
performance for a fleet of different plants located 
across a balancing area or region. 

– Used for testing build-out scenarios 
• Forecasting 

– Prediction of plant performance into the future. 
• Timing and magnitude of regional weather changes at 

a point or across a balancing area. 
• Location and velocity of fronts (step changes) 

– Used for operations planning 



Clearness Index
 

• PV output is primarily a function of integrated 
insolation reaching the array. 

• Clearness index (CI) removes predictable diurnal 
and seasonal cycles. 

CI = E/Ea 
E = global horizontal irradiance [W/m2] 
Ea = extraterrestrial irradiance * cosine(zenith angle) 

[W/m2] 
• Clearness index can be converted to irradiance 



 

 

Clearness Index
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Properties of Clearness Index 

• Short time interval measurements of CI exhibit 
bimodal distributions. 

• Valid model should reproduce this pattern. 

Florida (1 month) Hawaii (1 month)
 



Ramp Rate Distributions
 
(fixed time intervals)
 

• Fixed time interval methods examine the 
distribution of irradiance and power changes 
(‘ramps’) over a fixed time interval (e.g., 1-sec, 1-
min, 10-min, etc.) 
– Analysis of step changes 
– Analysis of moving averages 
– Regression of data within fixed time windows 

• This has been a primary focus of PV variability 
studies. 



Ramp Rate Distributions
 
(fixed time intervals)
 

• Distribution of fixed time interval ramps provide 
information about the role of geographic diversity 
in reducing ramp rates. 

• Is this method sufficient for 
characterizing variability? 



Ramp Events with Flexible Time Intervals 

• Utilities want information about frequency of 

ramp durations and magnitude in order to 

manage reserves.
 
– e.g., 1 min ramp rate might last for 20 minutes. 



Ramp Events with Flexible Time Intervals 

• A piecewise linear approximation calculates 
‘significant’ changes (e.g. Horst and Beichl, 1996 
and many others). 

• Results in a reduction of data and an increase in 

knowledge about the character of the changes. 


• Ramp events are 
described by two of three 
variables: 

1) Magnitude (Δp)
 
2) Duration (Δt)
 
3) Rate = Δp / Δt
 



Characterizing Flexible Time Ramp Events 

• Bivariate distribution (Duration and Magnitude) 
– 1 month of 1-sec data from Hawaii (~37,000 ramps) 
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Autocorrelation
 

• Clearness indices exhibit autocorrelation features
 
– Shadows extend over large areas and influence 

output for many time intervals. 
– Autocorrelation plots provide information about the 

combination of the size and spacing of shadows 
and the transit speed of the shadows across the 
ground. 

• Shadow transit speed can be measured (and 

shadow size and spacing can be inferred)
 
– Aviation weather 
– Irradiance sensor networks 



 

Autocorrelation
 

Autocorrelation plot reveals information about 
characteristic time scale between and inside 
shadows. 

1-Sec Clearness Index 
1.1 Autocorrelation: Clearness
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Spatial Correlation Features 

Irradiance Sensor 4 Irradiance Sensor 3 

• Irradiance (and power) 
measurements exhibit a 
spatially and temporally 
sensitive correlation. 
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Proposed Modeling Approaches 

• Plant output is related to a moving average of point 
irradiance (Longhetto et al., 1989). 
– Assumptions include irradiance is simply time-shifted 
– Falls apart for large or distributed plants 

• Hoff and Perez (2009) suggest that relative output variability 
follows a 1/sqrt(N) relationship. 
– Assumptions include identical PV systems, irradiance 

variability is the same everywhere, cloud patterns are the 
same everywhere. 

• Autoregressive time series models 
– Glasbey (2000, 2008), Tovar et al. (several papers) 

• Cloud (Sky) Simulators 
– Assumes that cloud fields can be predicted from 


available data (e.g., ground based weather or satellite) 




Modeling Effect of Geographic Diversity
 
with Simple Cloud Simulator
 

• Synthetic cloud model 
– Define cloud size range 
– Define cloud transmittance 
– Define cloud coverage 

• (1) Examine different spacing between plants 
– Fixed capacity PV plant (100 subarrays: 10 x 10) 
– Vary separation of subarrays 
– Examine output variability of fleet for a single 

synthetic day. 
• (2) Compare small, large, and distributed output
 



Effect of Geographic Diversity(a) 

Separation = 0 

Separation = 5 

Separation = 10 

Separation = 15 

Separation = 25 

Separation = 45 



PVCloudSim Model
 

Parameters: cloud radius = 10 to 100; transmittance 
= 0.2 to 0.7, cloud coverage = 0.35 
(Clouds can overlap) 
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